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Motivation 

 Manifestations of parameter uncertainty 
– Assets: option pricing, realized vs. implied volatility, index options
– Insurance: catastrophe reinsurance, clash, desire for aggregate stop loss covers

 Quantity of parameters vs. quantity of data

 Interplay of univariate volatility and correlation 
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Correlation Eventually Dominates Uncertainty
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The Importance of Uncertainty
 Fundamental purpose of capital modeling is assessing uncertainty

 Uncertainty is priced

 Insidious uncertainty is priced more
– Uncertainty that is statistically difficult to differentiate from the model assumptions 
– Catastrophe model uncertainty is a classic example
– Long-term return on stocks is another example

 Underwriters and investors often act making “worst case” assumptions, worst 
case being that most worrying most worrying to them 
– Event frequency 
– Model miss, demand surge, unmodeled perils, unknown exposures 
– Systemic risks, supply chain, mass tort, law change
– Contagion, correlation in portfolios, clash 
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Evidence 

 VP is the variance premium, the difference between option implied volatility 
and realized volatility over one month, or EQ(Vol)-EP(Vol)

 Asset volatility compounds individual stock volatility and correlation between 
stocks 

 1998 miss is the Asian debt crisis
Source for graphic and concept: Drechsler, I., Uncertainty, Time-Varying Fear, and Asset Prices, J of Fin, Oct 2013
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How to Measure Correlation, Dependency 

Pearson Correlation

Cov(X,Y)/SD(X)SD(Y)

Rank Correlation

Correlation of Ranks
= “Copula Correlation” 

Correlation of Normal 
Transformed Data

Normal Transform:
Phi-1(F(X))

Phi-1(Rank/(n+1))

Kendall’s Tau

2 (#Concordant Pairs –
#Discordant Pairs) / n(n-1)
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How to Measure Correlation: Quiet Period

 Correlation is estimated from the period, June 23, 2003 to April 7, 2004
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How to Measure Correlation: Financial Crisis

 Correlation is estimated from the period, Nov 11, 2007 to Oct 28, 2009
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Visualizing Correlation

 Left: scatter plot of daily returns of AIG vs JPM with a 95% confidence ellipse
 Center: scatter plot of the same data transformed to standard normal
 Right: copula scatter plot of same data transformed to uniform (ranks)
 Normal transformed data gives clearest, most intuitive picture of association

– Identifies and highlights uncorrelated but dependent, extreme tail correlation  
 Daily returns are from Nov 11, 2007 to Oct 28, 2009
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Detailed Analysis of Home to Pers. Auto Correlation
Some Indication of Heavy Tailed Dependence and “Pinching”

Private Passenger Auto Liability (x-axis) vs. Homeowners, $100M premium threshold 790 Annual Observations

Association Summary Univariate Summary
Linear Correlation, rho 1.7% Private Passenger Auto Liability Homeowners
90% Confidence Interval (-4.2%, 7.5%) Mean 0.8133 0.7721
Base Linear Correlation 17.1% Min 0.5046 0.2957
Extreme Linear Correlation (n=72) -15.4% Max 1.4601 3.6221
Rank Correlation 20.1% Std. Dev. 0.1005 0.3072
Rank Correlation from rho 1.6% CV 12.4% 39.8%
Normal-Transformed Correlation 12.7% Skewness 1.04 4.49
Kendall Tau 11.5% Kurtosis 3.89 31.72
Rho from tau 18.0% 90th percentile 93.4% 99.6%
Outliers at 10% and 1% levels 9.1% and 1.4% 99th percentile 112.9% 193.4%
Note: 1% outliers from normal copula marked in red. 10% and 1% and confidence intervals show  on right.
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Commercial Auto Liability vs. Other Liability 
Occurrence

Commercial Auto Liability (x-axis) vs. Other Liability Occurrence, $100M premium threshold 514 Annual Observations

Association Summary Univariate Summary
Linear Correlation, rho 70.3% Commercial Auto Liability Other Liability Occurrenc
90% Confidence Interval (66.5%, 73.8%) Mean 0.7999 0.7842
Base Linear Correlation 70.6% Min 0.3381 0.2659
Extreme Linear Correlation (n=52) 69.6% Max 1.9288 2.0328
Rank Correlation 70.4% Std. Dev. 0.2053 0.2767
Rank Correlation from rho 68.6% CV 25.7% 35.3%
Normal-Transformed Correlation 66.9% Skewness 1.35 1.33
Kendall Tau 48.2% Kurtosis 3.37 2.30
Rho from tau 68.7% 90th percentile 105.5% 115.3%
Outliers at 10% and 1% levels 10.1% and 1.9% 99th percentile 153.5% 174.4%
Note: 1% outliers from normal copula marked in red. 10% and 1% and confidence intervals show  on right.
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Correlation Diamond Reveals Relationships 
Corr(X,Y)

Corr(X, N(X)) Corr(Y,N(Y))
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Stochastic Volatility and Stochastic Correlation 
 Stochastic volatility models for stock market prices provide correction to 

geometric Brownian motion models well known to improve overall 
performance
– Three month realized volatility on S&P 500 ranges from under 10% to over 80% 

during the last 20 years
– Clear from historical data that volatility itself is an extremely volatile process
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Stochastic Volatility Correction Meaningful
Equity Models During the Credit Crisis

 During September to March 2008, the S&P 500 declined by around 45%
 What probability do popular equity models attach to this type of market event 

ex-ante?

 Historical return perspective, between 1927 and 2008 (82 years) 
– Worst annual performance: -44.4% in 1931[1]

– Second worst performance: -38.3%  in 2008
– Indicated return period between 1 in 40 and 1 in 80 years for 2008
– Captured well by the Heston model

Return Period for Model Calibrated in August 2008

GBM Merton Heston Heston SVJD
45% 89,191      - 304            435               
35% 1,441        1,261      79              106               
30% 320           289         45              58                 
25% 94             85           26              32                 
20% 35             31           16              19                 
15% 16             14           10              12                 
10% 8               8             6                8                   

Annual 
Decline In 
Equities

[1] Fama and French: How Unusual Was the Stock Market of 2008?

All models calibrated using maximum likelihood method
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Correlation Also Volatile Over Time

 Correlation of AIG and J.P. Morgan over time, with confidence ellipses below
 Higher correlation corresponds to lengthened ellipses
 Correlation time series is estimated using a 100 day moving window
 Ellipses are estimated from the first 100 days in Q3, every four years, starting 

at 1987
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Correlation Risk: Individual Stock vs. Index Options  
 Index options appear to “price volatility”: implied volatility > realized volatility 
 Index volatility = sum of individual volatility + correlation adjustment
 Average realized volatility on individual stocks >~ average implied volatility
 Solution: correlation is a priced risk

– Higher correlation decreases diversification benefits (bad)
– Volatility not priced for individual stock options

 Cross-sectional studies of individual and index options confirm correlation is 
priced but individual stock volatility is not

Source: The Price of Correlation Risk: Evidence from Equity Options 
by Driessen, Maenhout & Vilkov, Journal of Finance Volume: 64, Issue: 3, Published: June 2009

Index Options
Weighted Average of Individual Stocks
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Eigen Evolution: Importance of Market

 Correlation matrices estimated with a 100 day moving window, starting at the given date
 Eigenvectors based on daily returns in a 100 business day window, starting at the first 

business day of the year 
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About Covariance Matrices 
 A covariance matrix M is a symmetric positive definite 

– Meaning:  xt M x > 0  for all non-zero column vectors x

– If V is a random vector with covariance matrix M then xt V = Σi xiVi has 
variance xt M x

 Covariance matrices are “positive” and have “square roots” = Choleski
decomposition = upper triangular matrix C so that M = Ct C

 If V is a row vector of mean zero independent variables then W = VC has 
covariance matrix M
– Cov(W) = E[WtW] = E[CtVtVC] = CtE[VtV]C = CtC = M
– Positive definite iff covariance matrix

 A random symmetric matrix of high dimension is almost never positive 
definite, so how should we simulate them? 
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Facts about Covariance Matrices 
 A covariance matrix M can be diagonalized

– Exists orthogonal matrix B (origin preserving rigid motion, Bt B = I, Bt = B-1) and a 
diagonal matrix D so that M = Bt D B 

– Diagonal elements of D are eigenvalues, matrix M is eigenvector basis
– Positive definite iff all diagonal elements of D are positive: M is the basis 

expressing the quadratic form of M as a positive sum of squares 

 Rugby ball ellipsoid shape determined by eigenvalues 
– Largest eigenvalue (longest axis) explains most variance in data
– Next largest eigenvalue explains next most variance etc.
– Eventually remaining axes almost circular (like a rugby ball vs. a pebble)…circular 

dimensions do not contribute to correlation or association in any way
– The basis of Principle Components Analysis 

 Correlation often driven by relatively few important parameters
– Market risk for stocks is the classic example 
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How to Simulate Covariance Matrices 
 Method 1: start with positive eigenvalues and rotate/reflect

– Householder matrices provide random orthonormal matrices, reflection in plane 
perpendicular to random direction 

 Method 2: compute the covariance matrix of a random sample from a 
multivariate distribution with assumed covariance structure 
– Distribution known for normal samples, Wishart distribution, with (reasonably) 

straight-forward density function  
– Iman Conover method can be used to generate sample 
– Generating full range of outcomes 
– Naturally centered around desired covariance matrix 

 Method 3: Wishart process
– Matrix analog of Cox-Ingersoll-Ross square root process
– Continuous time evolution of family of covariance matrices 
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How to Simulate Covariance Matrices 
 Method 4: simulate Choleski matrix C, and form Ct C

– Upper triangular, otherwise free; hard to target around desired covariance matrix

 Method 5: averaging covariance/correlation matrices
– Given covariance matrices A (base) and B (perturbation) form (A+B)/2 as the 

arithmetic mean or B (B-1A)1/2 as the geometric mean

 Method 6: exponential of a symmetric matrix, exp(M)

 Method 7: perturb a base matrix M=CtC with another correlation matrix P to 
form CtPC
– If P is close to independent then sampled matrices will be close to M

 Method 8: perturb base matrix M in a direction P via M1/2exp(tM-1/2PM-1/2)M1/2
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Method 9: Vines and Partial Correlations
 Consider three variables

– G = crop growth rate
– T = average temperature  
– R = rainfall

 Example, these are correlated as
G T R 

– G 1 a > 0 b ? 0
– T 1 c < 0
– R 1

 Conditional correlation Corr(G, R | T) = (gr – gt.rt) / ((1 – gt2)(1 – rt2))1/2
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Method 9: Vines and Partial Correlations
 Vines and partial correlation provide convenient re-parameterization of 

correlation matrices because all parameters can be selected independently 
from (-1, 1)

 Using matrix below is particularly simple, called C-vine method 
– Generalization of the identity on previous slide can be used to “unpack” from 

conditional correlations to unconditional correlations
– Unpack bottom to top, left to right 

H. Joe, Generating random correlation matrices based on partial correlations, 
Journal of Multivariate Analysis 97 (2006) 2177–2189
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R and Matlab Code for Random Correlation Matrix 
RandUnifCorrMat <- function(n, eta)
{
## eta = 1 is uniform; otherwise proportional to 
det^(eta-1)

## set up the partial correlations
A <- array(0, dim=c(n,n))
for(i in 1:n)  {

A[i,i]=1
beta = eta + (n-1)/2 - i/2
if(i<n){
for(j in (i+1):n)    {

A[i,j] = 1 - 2*rbeta(1,beta,beta)
A[j,i]=A[i,j]
}

} else 
A[n,n]=1

}
## for each row, from bottom up; for each column, iterate 
up the partial correlations to unconditional correlation

for(i in (n-1):2){
for(j in (i+1):n){

for(k in 2:i){
A[i, j] = A[i - k + 1, i] * A[i - k + 1, j] + 

A[i, j] * sqrt((1 - A[i - k + 1, i] ^ 2) * (1 - A[i - k + 
1, j] ^ 2))      

}}}

## make symmetric 
for(i in 1:(n-1))  {

for(j in (i+1):n)    {
A[j,i]=A[i,j] }}

return(A)
}

function A = RandUnifCorrMat(n, eta)
A = zeros(n,n);
for i = 1:n

A(i,i)=1;
beta = eta + (n-1)/2 - i/2;
if(i<n)

for j = (i+1):n
A(i,j) = 1 - 2*betarnd(beta,beta,1,1);
A(j,i)=A(i,j);

end
else

A(n,n)=1;
end

end 

%% for each row, from bottom up; for each column, iterate 
up the partial correlations to unconditional correl
for i = (n-1):-1:2

for j = (i+1):n
for k = 2:i

A(i, j) = A(i - k + 1, i) * A(i - k + 1, j) + 
A(i, j) * sqrt((1 - A(i - k + 1, i) ^ 2) * (1 - A(i - k + 
1, j) ^ 2));

end
end

end
for i = 1:(n-1)

for j = (i+1):n
A(j,i)=A(i,j);

end
end
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Application of Vines Method 
 Several alternative approaches 

– Starting with correlation matrix compute matrix of partial correlations and simulate 
partial correlations in a range around original matrix

– Use one of Methods 2, 5, 7 or 8

 Example using Method 7
– Perturb a base matrix M=CtC with another correlation matrix P to form CtPC
– Generate P using vines
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Example Based on Non-Cat Insurance Risk 
 Four standard commercial lines of business

– Volatility and correlation assumptions from Insurance Risk Study, 2012 and 2013 
editions 

– Portfolio standard deviation 204, CV 20.8%
– Standard deviation if lines are independent is 164 (CV=16.6%) and if perfectly 

correlated 309 (CV=31.4%)
– Average correlation factor is 0.22

Correlation Volatility Example Assumptions 
Line Premium Loss Ratio E(Loss) CV(Loss) SD(Loss)
Comm Auto 200 70.0% 140 0.24 33.6
WC 500 75.0% 375 0.27 101.3
Other Liab Occ 400 65.0% 260 0.38 98.8
CMP 300 70.0% 210 0.36 75.6

Correlations Comm Auto WC Other Liab Occ CMP
Comm Auto 1 0.24 0.268 0.212

WC 0.24 1 0.244 0.172
Other Liab Occ 0.268 0.244 1 0.196

CMP 0.212 0.172 0.196 1
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Example Based on Non-Cat Insurance Risk 
Coefficient of Variation Distribution    Implied 200 Year PML

 200 year PML on an expected basis is 1637, mid point of simulated range
 90th percentile PML over the correlation distribution is 1803, 99th is 1931 and 

99.5th is 1955
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Conclusion 
 Correlation is hard to estimate and non-constant

 Reflecting uncertainty and range of possibilities in correlation matrices 
improves tail estimates of models and provides a realistic stress test

 Once marginal distributions have been generated, applying Iman-Conover 
algorithm to variety of correlation matrices allows impact of uncertain 
correlation to be assessed quickly

 Method can be applied as a quick post-processing step to more rigorously 
modeled multivariate distributions

 Variety of methods to simulate correlation need further testing 
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